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An analysis is presented to investigate the time-mean characteristics of the laminar 
boundary layer near an axisymmetric stagnation point when the velocity of the oncoming 
flow relative to the body oscillates. Different solutions are obtained for the small and high 
values of the reduced frequency parameter. The range of Reynolds numbers considered 
was from 0.01 to 100. Numerical solutions for the velocity functions are presented, and 
the wall values of the velocity gradients are tabulated. 
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Introduction Mass 

Lighthill’ studied the effect of fluctuating oncoming stream on 
the skin friction and heat transfer of a two-dimensional body. 
He used the results of the velocity field in which the mainstream 
veiocity fluctuates in magnitude but not in direction. Mori and 
Tokuda2 investigated the heat transfer from an oscillating 
cylinder. Gor1a3 examined the unsteady fluid dynamic charac- 
teristics of an axisymmetric stagnation point flow on a circular 
cylinder performing a harmonic motion in its own plane. He 
presented solutions for small and high values of the reduced 
frequency of oscillation. 

Studies of boundary layer response to an oscillatory flow 
superimposed on a mean free stream fluid motion are of 
fundamental importance in many aerodynamic and industrial 
applications. Typical problems arise in the study of aircraft 
response to atmospheric gusts, in aerofoil lift hysteresis at the 
stall, in the prediction of flow over helicopter rotor blades, 
and through turbomachinery blade cascades. 

The present work deals with the time-mean characteristics 
of the periodic boundary layer near an axisymmetric stagnation 
point on a circular cylinder. The analysis considers the case 
when the fluctuations in the external flow are produced by 
fluctuations of the oncoming stream. Figure 1 shows a cylinder 
described by r = a in cylindrical polar coordinates. The flow is 
axisymmetric about the z axis and also symmetric to the z=O 
plane. The stagnation line is at z =0, r = a. This flow is useful 
in certain cooling processes. Gor1a5s6 has recently studied the 
problem of transient thermal response of a laminar boundary 
layer in the vicinity of an axisymmetric stagnation flow on an 
infinite circular cylinder. 

Governing equations 

Let us consider a laminar, incompressible, unsteady flow at an 
axisymmetric stagnation point on a circular cylinder. Figure 1 
shows the flow mode1 and the coordinate system. The governing 
equations within boundary layer approximation are as follows: 
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The boundary conditions are given by 

(2) 

(3) 

r=a: u=w=o 

r-co: u = V, = - A(r - a2/r)( 1 + sein’) 

w = IV, = 2AZ( 1 + se”‘) (4) 

When E is small compared with unity, u and w may be expanded 
as 

u(r, z, t)=u,(r, z)+.5ul(r, z, t)+s’u,(r, z, t)+ . . . 

w(r, z, t)=w,(r, z)+.cwl(r, z, f)+E2w2(r, z, t)+ . . + (5) 

Substituting the expressions in Equation 5 into Equations l-3 
and equating terms of the same order of E, we obtain sets of 

Figure I Coordinate system and flow development 
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differential equations. The zeroth-order equations are 

r dWO +d(ruo)=o 
dz ar 

u o d U O + w o d U O = A 2 ( r _ a 2 ~ (  1 a 2 ' ~  r ',o , 

(6) 

(7) 

UO~r°+Wo du°~=4A-'2- [~LT-_2 - [ - d 2 w °  1 aWol 
Z + v L  ur + r  ~r ] 

(8) 

The boundary conditions for the zeroth-order equations may 
be written as 

r=a:  Uo=Wo=0 

r ~ :  Uo ~ - A ( r - a 2 / r )  (9) 

w o -~ 2AZ  

The first-order equations are 

r ~-z-q-~r (rul)=O (10) 

~+UO ~r +UI ~r +WO ~z +Wl duO 
T; 

[ a2\ / a2\/ a2\ 
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[-d2ut ldul  u l ]  
vL-~rZ-V r ar F (II)  
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The boundary conditions for the first-order equations are 

r = a :  UI=WI=0  

r ~  ~ :  ul ~ - - A ( r - - a 2 / r ) e  im 

w~ --* 2AZe  im (13) 

C o o r d i n a t e  t r a n s f o r m a t i o n  and  s o l u t i o n  

U o  = - Aa~- t/2f(~) 

w o = 2Af'(~l)Z 

ut = - Aatl-  1/2g(rl)ei~ 

w I = 2Ag'(~l)e ~ 

o=lalA 
Re = (Aa2/2v) (14) 

Substituting the expressions in Equation 14 into the zeroth- 
order equations, we have 

r/f " + f "  + Re[1 + f f "  - (f,)2] = 0  (15) 

The primes designate differentiation with respect to ~/only. The 
transformed boundary conditions are 

f ( 1 ) = f ' ( 1 ) = 0  and f ' ( ~ ) = l  (16) 

The numerical solution for Equation 15 is well known (see 
Reference 3), so details are not repeated here. 

After substituting Equation 14 into the first-order equations, 
we have 

~l~ , , ,±~ , ,~Rer¢ . , ,±~r , ,  2¢ ,~ ,±21±Re(1-g  ') T 2 ~  ~ L ~  ~ J  - -  .j ~ 7- j - ~  i a = 0  ( 1 7 )  
2 

with transformed boundary conditions 

g(1)=0, g'(1)=0, and 0'(oo)=1 (18) 

Since Equation 17 contains the frequency parameter ~t, solutions 
are presented for small- and large-frequency cases. 

S m a l l - f r e q u e n c y  case  

When a<< 1, we assume that 

g(~/) = go(~/)+ iagl(rl)+ (itr)2g2(~) + "'" (19) 

Substituting Equation 19 into Equation 17 and collecting like 
powers of ia, we have 

m ~ It # tt  t t 

r/Oo + 2go + Re[fgo + Oof - 2f  go + 2] = 0 (20) 
tst ~L tt  # ~ it  t t / 

t]gl + 2el + Re[fgl  + g f f  - 2 f  e t  +½(1 -go) ]  =0  (21) 

,,, a , ,  R . . . .  2 ' '  ' )/g2 +202+ e E f o 2 + o 2 f  - ) f e 2 - ½ ( g 0 ] = 0  (22) 

,,, a , ,  Re " " 2 ' '  x , ~lg3 +2ga+ [ f g a + g 3 f  - ~ga-2(g2) ]  =0  (23) 

" a " Re " " 2 ' '  I , ~/g, +204+ [ f g g + g , f  - f g4--2(ga)] = 0  (24) 

We now define 

r I = (r/a) 2 

Equations 20-24 are solved by means of the fourth-order 
Runge-Kutta numerical procedure on an IBM 370 computer. 
Re was treated as a prescribable parameter and ranged from 

N o t a t i o n  

A Constant used in Equation 4 
a Radius of cylinder 
f, O Velocity profile functions 
p Pressure 
Re Reynolds number, Aa2/2v 
r Coordinate normal to the cylindrical surface 
t Time 
u Velocity component in r direction 
w Velocity component in z direction 
z Coordinate parallel to the wall 

r/ Dimensionless coordinate 
# Dynamic viscosity 
v Kinematic viscosity 
p Fluid density 
fl Frequency of oscillation 
tr Reduced frequency parameter, FI/A 

Amplitude of oscillating velocity 

Subscripts 
w Conditions at the wall 

Conditions far away from the wall 
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100.0 

Re- .01 

0.01 to 100. The numerical results obtained for O'o(rl), g'l(tl), 
g~(q), g~(q), and 0~(rt) are shown in Figures 2-6 for several 
values of Re. The values of i f ' 0 ) ,  g~(1), 0~(1), g~(1), g'~(l), 
and g;;(l) for the same range of Reynolds numbers have 
been tabulated in Table 1. In many practical applications, a 
knowledge of the wall shear stress is of importance and may 
be calculated by using the information in Table 1. The local 
wall shear stress may be written as 

\0r/,=. 
' / x ~  4AZ ~ ~ l / x ¢  lO 8 =IZ a [ f " ( l ) + e e W U g " ( 1 ) + " ' ]  (25) 

Two = p - - I  
ar I,~. 
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1.o ~ ~/ 
0 0.1 0.2 0.4 0.6 0.8 1.0 
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6.5 - Re= 0.1 Figure 4 Distribution of g~, g;, g~, g~ and g; for Re = 1.0 

5 .5-  

4.5 

V 3.5 xlOa 

V ' , ,  /_, 
2.5 

xlO 4 
x@ 

1 " 1 [ ~ ~ v ~  I 1.5 

tO 
02  0.4 0.6 0 P- 1.0 0 0.5 tO 

Figure 5 Distribution of g~, g;, g;, g~, and g', for Re=lO.O 
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Figure 3 Distribution of g~, g;, g~, g~, and g; for Re=0.1 
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and 

l~wt ~ ] J  ~ r  r =  a 

we may write 

zwt 1 
- . [a ' ; , (1 )+( i0 . )a '~ (1 )+( i0 . )2a '~ (1 )  

z. o f (1) 

+ (io)3g'~(1) + (i0.)'*g~.(l) + . . .  ] 

High-frequency case 

For this case we assume that 

g = e(q, 0.) + Q(0.)e ~.°) 
where 

P ~ , .  P,( r / )  P2(q)  P3(r/) 
= r o ( ~ / + ~ 0 . +  a + ~ + " "  

Q ~ Qt Q2 Q3 =~o+~+V+o~,~+"" 
,--F . RI(~/), R2(t/), 

R = 4 ~ / e o ( n J + : +  ...-] 
L 40" (7 
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Figure 6 Distr ibut ion of  g~, g'~, g~, g~ and g;  for  Re = 100.0 

(26) 

(27) 

(28) 

Substituting Equations 27 and 28 into Equation 17, we obtain 

P~-l=0 
P~ =0 

2 . , _ ,, 
ie '~ = Ree {~P~' + (3 + Re f)Po + Re f"Po - 2 Re f'Po + 2 Re} 

iR'o - 2  q(R'o) 3 =0 

iR'~ = 6  ,I(R~)2R i x Ree R'oR'~ + ~ee (~ + Re f)(R~) 2 
6 

: (29) 

The boundary conditions are 

Po(1)=0 

P1(1)+Qo=0 

P~(1 ) + R~(1)(Qo) = 0 

P](1)+ QoR'~(1)Q~ =0 
: (30) 

It may be finally shown that 
[- [ 2 ~1/2 1 -] 

- - J l -  • "" J 
+ 1/2 + . . .  exp(R) (31) 

where 

R = - w / 2 ~  v / ~  (qx/z- 1 ) - [~  ( ; - -  1) + ~ In q + ~--~e f :  ~ dr/] 

Using Equations 30 and 25, we may write 

%,t 1 [1 ~ .  ~/~ 3 2 1 
~ , o ~ f , 7 ( 1 ) L ~ + ~ / i ~ - ~ e ~ +  ... ] (32) 

The amplitude C and phase angle ~ of the fluctuating skin 
friction of order e have been illustrated in Figures 7-9 for 
selective values of the Reynolds number. 

Discussion 

The magnitude of the shear stress may be calculated from 
Equation 32 as follows: 

I~.1 = [(~w~ + (~.)2],2 (33) 
The phase angle for the shear stress is 

~b M = tan- 1 [(z.)t/(z,~)R] (34) 

In the above equations, the subscripts I and R denote imaginary 
and real parts, respectively. 

T a b l e  1 Values of  Re-1/2f"(1 ) and Re- ' /=g,(1 ) for  var ious values o f  Re 

Re Re-'/=f"(1 ) Re-'/=go(1 ) Re-'/=g~'(1 ) Re-  V=g~(1 ) Re -  V=g~ (1) Re-  V=g;(1 ) 

0.01 3 .155182 7 .559609 0 .082588 - 0 .000810 1.041 2 x 10 -6 - 1.1 x 1 O- 7 
0.10 1 .946369 3 .726076  0 .105598  - 0 . 0 0 1 8 0 3  1.2645 x 10 -e - 9 . 6 4 8  x l O  -~ 
1.00 1.4841 85 2 .475295 0.118451 - 0 . 0 0 2 6 1 1  5.3851 x 10-B - 2.9741 x 10 -6 

10.10 1.31 6427 2 .095855 0 .119579 - 0 .002629 2 .4222 x 10 -4 - 3 .0157 x 10 -e 
100.00 1 .259642 1.911631 0 .140150  - 0 .005480 3.61606 x 1 0 - '  - 3 .07083 x 10 -s 
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Figure 7 Amplitude C and phase angle 
component of skin friction for Re=0.01 
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we can see that Equation 15 reduces to the Hiemenz problem 

~b" + ~b~b" - (~b') 2 + 1 = 0 (36) 

with boundary conditions 

$(0) = $'(0) = 0, $ ' (oo)  = 1 (37) 

Similarly by defining 

g(~/) = R e -  1/2 h(?/) (38) 

we find that Equation 17 reduces to 

h" + d?h' - h ~ b ' -  icrh = 0 (39) 

with boundary conditions 

h(0)= 0, h(oo) = 1 (40) 

For a = 0 ,  Equation 37 yields 

h = dp"(~l)/O"(O) = 0.811 ~"(~/) (41) 

C o n c l u d i n g  r e m a r k s .  

10 
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Figure 8 Amplitude C and phase angle ~b of the fluctuating 
component of skin friction for Re = 1.0 

Figures 2-6 show the numerical results for the first-order 
unsteady equations for Re ranging from 0.01 to 100. 

Figures 7-9 display the results for the amplitude and phase 
angle of the wall skin friction fluctuations. In these figures, the 
low-frequency solution and the high-frequency solution are 
shown by dotted lines, and the solid curves represent the 
matching of these asymptotic solutions. The amplitude of 
the skin friction fluctuation increases monotonically with the 
dimensionless frequency parameter (r. 

The phase angle is in advance of the free stream fluctuation 
and an asymptotic phase advace of 50 ° is attained for the range 
of Reynolds numbers investigated. For Re- ,  oo, it was noticed 
that this phase advance approaches 45 ° at very large frequency. 
The low-frequency solution does not always agree with the 
high-frequency solution near the region where the frequency 
parameter is unity, but the solution truncated at the fifth power 
for low frequency agrees well with the one truncated at the 
third power for high frequency in that region. 

We expect that the results for large values of Re would 
correspond to the two-dimensional stagnation flow on a flat 
plate. Using the transformation 

f(~/)-- Re- 1/2~(~), ~ = Re1/2 ( t / -  1) (35) 

The velocity distribution in an oscillating laminar boundary 
layer in the vicinity of an axisymmetric stagnation point has 
been analyzed by means of a boundary layer approximation. 
The amplitude and the phase angle of the wall skin friction 
fluctuation are calculated for small and large values of the 
reduced frequency of oscillation. 

The results indicate that the amplitude and phase advance 
of skin friction fluctuation increase with frequency of oscillation 
of the mainstream, and an asymptotic phase advance of 50 ° is 
attained at very large frequency for Reynolds numbers ranging 
from 0.01 to 10. For Re--+ ~ ,  this phase advance was observed 
to reach 45 ° . 

The flow configuration described in this paper finds its 
applications in certain cooling processes as well as quenching. 
The analysis presented in the paper should help in the under- 
standing of the flow mechanism and in an estimate of friction 
loss. 
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Figure 9 Amplitude C and phase angle ~b of the fluctuating 
component of skin friction for Re = 100.0 
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